Chapter 12 Limits and an Introduction to Calculus

Section 12.1 Introduction to Limits

Section Objectives: Students will know how to estimate limits, use properties of limits, and evaluate limits by direct substitution.

I. The Limit Concept (p. 852)

Pace: 1 minute

- State that the notion of a limit of a function is fundamental to all calculus.
- **II. Definition of Limit** (pp. 853–854)

Pace: 10 minutes

• State that if f(x) becomes arbitrarily close to a unique number *L* as *x* gets closer to *c*, then the **limit** of f(x) as *x* approaches *c* is *L*. This is denoted by $\lim_{x \to c} f(x) = L$.

Example 1. Use a table to evaluate the following limits. a) $\lim_{x\to 4} (x-1)$

x	3.9	3.99	4	4.001	4.01	4.1				
f(x)	2.9	2.99	?	3.001	3.01	3.1				
1 = 1 = 1 = 2 $1 = 2$ $1 = 2$ $1 = 2$										

Hence,
$$\lim_{x \to 4} (x-1) = 3$$
. Also not that $f(4) = 3$

b)) $\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$									
	x	1.9	1.99	2	2.001	2.01	2.1			
	f(x)	3.9	3.99	?	4.001	4.01	4.1			
		ົ <u>ງ</u> .		-	-	-	-			

Hence, $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$. Also not that *f* is undefined at 2.

Example 2. Use the graph of the function to evaluate the following limits.

Hence, the limit is 4. Note that although it does not appear on our graphing utilities, there is a hole in the graph at x = 2.

b) $\lim_{x \to \pi} \cos x$

Hence, the limit is -1. Also note that $\cos \pi = -1$.

Larson/Hostetler Precalculus with Limits Instructor Success Organizer Copyright © Houghton Mifflin Company. All rights reserved.

Course/Section Lesson Number Date

III. Limits That Fail to Exist (pp. 855–856)

Example 3. Do the following limits exist?

You can see that as x approaches 0, f(x) oscillates between -1 and 1. Therefore there is no *unique* number that f(x) approaches.

• Direct students' attention to the *Technology* feature at the bottom of text page 856.

IV. Properties of Limits and Direct Substitution (pp. 857–859) Pace: 15 minutes

• State the following properties of limits. 1. $\lim_{x \to c} b = b$ 2. $\lim_{x \to c} x = c$ 3. $\lim_{x \to c} x^n = c^n$

$$4. \lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$$

• State the following operations with limits. 1. $\lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)$

$$2. \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

$$3. \lim_{x \to c} [f(x)g(x)] = \left[\lim_{x \to c} f(x)\right] \lim_{x \to c} g(x)\right]$$

$$4. \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}, \text{ if } \lim_{x \to c} g(x) \neq 0$$

$$5. \lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n$$

Example 4. Evaluate the following limits. a) $\lim_{x \to 4} \sqrt{x} = \sqrt{4} = 2$

b) $\lim_{x \to 1} x^2 - 2x + 5 = 1^2 - 2(1) + 5 = 4$

c)
$$\lim_{x \to 0} \frac{x+1}{x^2+5x-4} = \frac{0+1}{0+0-4} = -\frac{1}{4}$$

- State that if *p* is a polynomial function, then $\lim_{x\to c} p(x) = p(c)$.
- State that if r(x) = p(x)/q(x), where *p* and *q* are polynomial functions, then $\lim_{x \to c} r(x) = r(c)$, if $q(c) \neq 0$.

Example 5. Evaluate the following limits. **a)** $\lim 2x^2 + 6x - 5 = 2(1)^2 + 6(1) - 5 = 3$

b)
$$\lim_{x \to 2} \frac{x^2 - x - 1}{x^2 + 2} = \frac{2^2 - 2 - 1}{2^2 + 2} = \frac{1}{6}$$

• Assign the Writing About Mathematics on page 859 of the text.