Chapter 2 Polynomial and Rational Functions

Section 2.2 Polynomial Functions of Higher Degree

Section Objectives: Students will know how to sketch and analyze graphs of polynomial functions.

I. Graphs of Polynomial Functions (pp. 139–140) Pace: 10 minutes

- Discuss these characteristics of graphs of polynomial functions.
 - 1. Polynomial functions are continuous. This means that the graphs of polynomial functions have no breaks, holes, or gaps.
 - 2. The graphs of polynomial functions have only nice, smooth turns and bends. There are no sharp turns as in the graph of y = |x|.
- We will first look at the simplest polynomials, $f(x) = x^n$. These are called **power functions.** We can break these into two cases, n is even and n is odd.

Here n is even. Note how the graph flattens at the origin as n increases.

Here n is odd. Note how the graph flattens at the origin as n increases.

Example 1. Sketch the graph of the following. **a)** $f(x) = -(x+2)^4$

b)
$$f(x) = (x-3)^5 + 4$$

II. The Leading Coefficient Test (pp. 141–142)

Pace: 10 minutes

• Work the *Exploration* on page 141 of the text. Then summarize with the following chart.

$f(x)=a_nx^n+\cdots$	$a_n > 0$	$a_n < 0$
n even	* 1	✓ \
n odd	*	

Example 2. Describe the right-hand and left-hand behavior of the graph of each function.

a)
$$f(x) = -x^4 + 7x^3 - 14x - 9$$

Down to both sides

b)
$$g(x) = 5x^5 + 2x^3 - 14x^2 + 6$$

Down to the left and up to the right

III. Zeros of Polynomial Functions (pp. 142–145) Pace: 15 minutes

- State the following as being equivalent statements, where f is a polynomial function and a is a real number.
 - 1. x = a is a zero of f.
 - 2. x = a is a solution of the equation f(x) = 0.
 - 3. (x-a) is a factor of f(x).
 - 4. (a, 0) is an x-intercept of the graph of f.

Example 3. Find the x-intercepts of the graph of $f(x) = x^3 - x^2 - x + 1$.

$$f(x) = x^{3} - x^{2} - x + 1$$

$$0 = x^{2}(x-1) - 1(x-1)$$

$$0 = (x^{2} - 1)(x - 1)$$

$$0 = (x - 1)^{2}(x + 1)$$

$$(x - 1)^{2} = 0 \Rightarrow x = 1$$

$$x + 1 = 0 \Rightarrow x = -1$$

The x-intercepts are (-1, 0) and (1, 0).

• Note that in the above example, 1 is a repeated zero. In general, a factor $(x-a)^k$, k > 1, yields a **repeated zero** x = a of **multiplicity** k. If k is odd, the graph *crosses* the x-axis at x = a. If k is even, the graph only *touches* the x-axis at x = a. See the graph below.

• To graph a polynomial function, you can use the fact that the function can change signs only at its zeros. Between two consecutive zeros, the polynomial must be either *entirely positive* or *entirely negative*. Tell students that if the real zeros are put in order, they divide the number line into **test intervals** on which the function has no sign changes. By picking a representative x-value in each test interval, students can determine whether that portion of the graph lies above the x-axis (positive value of *f*) or below the x-axis (negative value of *f*).

Example 4. Sketch the graph of $f(x) = x^3 - 2x^2$.

- 1. Since $f(x) = x^2(x 2)$, the x-intercepts are (0, 0) and (2, 0). Also, 0 has multiplicity 2; therefore, the graph will just touch at (0, 0).
- 2. The graph will go up to the right and down to the left.

3. Use the zeros of the polynomial to find test intervals. Additional points on the graph are (-1, -3), (1, -1), and (3, 9).

<u> </u>	points on the graph are (1, 2), (1, 1), and (2, 2).				
Test Interval	$(-\infty,0)$	(0, 2)	(2, ∞)		
x-value	-1	1	3		
Result	f(-1) = -3 Negative	f(1) = -1 Negative	f(3) = 9Positive		

4. Sketch the graph.

IV. The Intermediate Value Theorem (pp. 146–147) Pace: 10 minutes

• Draw and label a picture similar to the one on page 146 of the text, which has been included here.

- Show how the Intermediate Value Theorem, which follows here, applies. Let a and b be real numbers such that a < b. If f is a polynomial function such that $f(a) \ne f(b)$, then, in the interval [a, b], f takes on every value between f(a) and f(b).
- We can use this theorem to approximate zeros of polynomial functions if f(a) and f(b) have different signs.

Example 5. Use the Intermediate Value Theorem to approximate the real zero of $f(x) = 4x^3 - 7x^2 - 21x + 18$ on [0, 1].

Note that f(0) = 18 and f(1) = -6. Therefore, by the Intermediate Value Theorem, there must be a zero between 0 and 1.

Furthermore, note that f(0.7) = 1.242 and f(0.8) = -1.232. Therefore there must be a zero between 0.7 and 0.8.

This process can be repeated until the desired accuracy is obtained.